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A B S T R A C T   

Accurate and precise monitoring of the absolute density (i.e., number of fish per area or volume unit) of exploited 
fish stocks would be strongly advisable for deriving stock status and for designing proper management plans. 
Moreover, monitoring should be achieved at relevant (i.e., sufficiently large) temporal and spatial scales. This 
objective is particularly challenging for data-poor fisheries, as is often the case for recreational fisheries. 
Therefore, the feasibility of underwater video monitoring (vertical unbaited cameras) for estimating, as a proof of 
concept, the absolute density (and its ecological drivers) of a coastal sedentary fish species is demonstrated. The 
absolute density of a small serranid (Serranus scriba) targeted by recreational fishing was estimated along the 
southern coast of Mallorca Island (nearly 100 km). The median fish density ranged between 111 ind/km2 (Es 
Molinar) and 14,110 ind/km2 (Cabrera). Absolute density was correlated with fishing exposure, habitat, and 
depth. Site specific, seemingly long-term, effects of fishing exposure were negatively correlated with fish density, 
but short-term effects (assessed by the interaction between fishing exposure and before/after the season when 
recreational fishing occurred in the study area) were not detected. We suggest that the short-term effects of 
fishing may remain undetected because highly exploited sites could contain fish that are already not vulnerable 
to recreational fishing gear, irrespective of the short-term fishing pressure exerted. Such a process may explain 
some hyper-depletion patterns and should preclude the use of fisheries-dependent data for monitoring fish 
density. The results reported here indicate that monitoring fish abundance with vertical unbaited cameras at 
large spatial and temporal scales can be a reliable alternative for many species.   

1. Introduction 

Proper assessment of population dynamics is essential for ensuring 
sustainable management and effective conservation of species and 
habitats (Milner-Gulland and Rowcliffe, 2007). Specifically, supplying 
accurate and precise monitoring of the absolute density (i.e., number of 
fish per area or volume unit) of exploited fish stocks is strongly advisable 
for deriving stock status and for designing proper management plans 
(Giacomini et al., 2020; Pauly et al., 2013). Nevertheless, biological 
reference points of stock assessment are usually defined using 
fishery-dependent data, although it is well known that these data are 

prone to bias (Alós et al., 2015a, 2014; Alós and Arlinghaus, 2013; Saul 
et al., 2020); thus, they may lead to inappropriate management de-
cisions (Simmonds, 2007). In addition, wildlife monitoring should be 
achieved at relevant (i.e., large enough) temporal and spatial scales for 
adopting management decisions (Pollock et al., 2002). 

Monitoring problems are exacerbated in the case of recreational 
fishing (Post, 2013), whose impacts on resources are a matter of concern 
(Cooke and Cowx, 2004). Marine recreational fishing is one of the most 
extended leisure activities in coastal waters worldwide (Hyder et al., 
2018; Post, 2013), and it is a particularly relevant activity along the 
Mediterranean coast, where it may represent approximately 10% of total 
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Contents lists available at ScienceDirect 

Fisheries Research 

journal homepage: www.elsevier.com/locate/fishres 

https://doi.org/10.1016/j.fishres.2022.106362 
Received 30 November 2021; Received in revised form 4 May 2022; Accepted 4 May 2022   

mailto:g.follana@gmail.com
www.sciencedirect.com/science/journal/01657836
https://www.elsevier.com/locate/fishres
https://doi.org/10.1016/j.fishres.2022.106362
https://doi.org/10.1016/j.fishres.2022.106362
https://doi.org/10.1016/j.fishres.2022.106362
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fishres.2022.106362&domain=pdf


Fisheries Research 253 (2022) 106362

2

Fig. 1. Study area along the southern coast of Mallorca. The anchors (Harbor) represent the ports and marinas, the red buttons represent the sampling sites where 
remote underwater video cameras (RUV) were deployed, the polygons with lines represent the marine protect areas (MPAs), and the estimated fishing exposure (boat 
outings/km2/year) is denoted from blue (minimum fishing exposure) to red (maximum fishing exposure). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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catches and where it involves a large number of practitioners (Grau, 
2008; Morales-Nin et al., 2015, 2005). However, monitoring recrea-
tional fishing exposure, catches and abundance is difficult; thus, pre-
dicting the effects of recreational fishing on the population dynamics of 
exploited species is a particularly elusive task (Arlinghaus and Cooke, 
2005; Pita et al., 2020; Radford et al., 2018). 

Given that underwater video techniques are increasingly used for 
monitoring reef fish, we aim to demonstrate, as a proof of concept, the 
feasibility of underwater video for estimating the absolute density of a 
coastal fish species heavily exploited by recreational fishing but 
commercially unexploited. Underwater cameras are already providing 
an unprecedented amount of fishery-independent data (Mallet and 
Pelletier, 2014; Przeslawski and Foster, 2018; Sheaves et al., 2020). 
Their use is currently so widespread that underwater cameras are 
reshaping the way the marine realm is observed (Mallet and Pelletier, 
2014; Sheaves et al., 2020). 

The relative abundance indices extracted from several camera set-
tings have been extensively compared to each other and to underwater 
visual censuses (UVC) and other methods (Watson et al., 2005). Un-
fortunately, these empirical comparisons demonstrated that effective 
integration of relative abundance indices from different monitoring 
methods is problematic (Cheal et al., 2021). 

In contrast to relative abundance indices (e.g., N max , or the 
maximum number of fish counted in any frame of a video), several 
methodological advances for estimating absolute density (i.e., number 
of fish per area or volume unit) have been recently proposed (Abolaffio 
et al., 2019; Campos-Candela et al., 2019, 2018; Follana-Berná et al., 
2020, 2019). These contributions developed the theoretical framework, 
explored several statistical challenges via computer-simulated experi-
ments (e.g., how to improve accuracy and precision), or addressed 
technical issues (e.g., accounting for fish detectability or improving 
device design). However, a real-world demonstration of the feasibility of 
estimating fish density under field conditions and at a scale large enough 
for supporting management decisions is still lacking. Such a real-world 
demonstration is essential because, despite the absolute density esti-
mates obtained by these methodological advances seeming unbiased 
and accurate (Abolaffio et al., 2019; Campos-Candela et al., 2018), there 
is still some debate on whether the sampling effort needed for achieving 
a target precision is affordable (Abolaffio et al., 2019; Campos-Candela 
et al., 2019). Thus, our primary aim is to demonstrate the feasibility of 
underwater cameras for estimating the absolute density at the mesoscale 
(near 100 km along the southern coast of Mallorca Island) of a small 
serranid (Serranus scriba) exploited by recreational fishing (Dedeu et al., 
2019). 

Moreover, as a proof of concept, we evaluated the feasibility of the 
proposed framework for exploring the effects of different ecological 
drivers on fish abundance. Specifically, we evaluated the effects of three 
of the most typical drivers affecting coastal fish density: habitat type, 
depth, and fishing exposure (Stoner, 2004). Concerning fishing expo-
sure, we attempted to discriminate the short-term effects from the 
site-specific effects by monitoring the same sites before and after sum-
mer, which is when most recreational fishing activity occurs in Mallorca 
(Cabanellas-Reboredo et al., 2014; March, 2014; March et al., 2014). 
The relevance of short-term effects was assessed by comparing the 
between-season differences in density along a gradient of fishing expo-
sure (i.e., larger decreases in density after summer are expected at sites 
more exposed to fishing). 

2. Materials and methods 

2.1. Study area and sampling 

The absolute density of S. scriba was estimated at 15 sites covering 
the southern coast of Mallorca Island (Fig. 1). 

The selected sampling sites were distributed along nearly 100 km, 
and they displayed well-contrasted fishing exposure and management 

strategies (e.g., from heavily exploited sites to marine protected areas, 
MPAs) and cover the full environmental gradient range inhabited by 
S. scriba: from rocky bottoms to seagrass meadows of Posidonia oceanica 
and from the coastline to an approximately 30 m depth (March et al., 
2010). 

To assess the variability in fish density at a short spatial scale, at each 
sampling site, ten vertical underwater camera devices were randomly 
deployed per season (spring and summer) within an area between 0.5 
and 1 km2. All devices from a given site and season were deployed on the 
seabed in a single day and left from (approximately) 8:00–12:00, which 
ensured that each device recorded until the end of its battery life 
(approximately 3 h and 15 min). Cameras were deployed on suitable 
habitat for S. scriba, and distances between the cameras deployed in the 
same day were longer than 200 m to minimize between-camera spatial 
autocorrelation (Follana-Berná et al., 2020). 

As stated above, two samplings were completed at each of the 15 
sites to assess the short-term effects of the estimated fishing exposure on 
fish density: late spring and late summer. This sampling design should 
have provided 300 videos (15 sites, 10 cameras per site, and 2 seasons 
per site), but the actual number of videos finally analyzed was 257 
because of diverse problems (cameras lost or theft, battery problems, 
camera malfunctions, landings on the seabed at the wrong angle, etc.). 
Sampling dates and the coordinates of all points where cameras were 
deployed are provided at repository https://doi.org/10.17632/8c5 
jwvkvsz.6. 

The underwater camera device consisted of a vertical structure with 
two action cameras, Sony HDR AS50®, separated from each other by a 
distance of 20 cm and looking down at an angle of 45◦. This design has 
already been successfully used for estimating the fish density of S. scriba 
(Follana-Berná et al., 2020). The device, built with PVC pipes, incor-
porated a counterweight at the base and a buoy at the top, which 
ensured its vertical position at any moment. The cameras were located 
150 cm from the base of the device. The seabed area surveyed by a 
camera was 5.0 m2 (Follana-Berná et al., 2020). 

The videos were manually examined by an observer following a 
previously developed and tested protocol (Follana-Berná et al., 2020). 
Briefly, the first minute after the device made landfall on the seafloor 
was discarded to avoid any abnormal fish behavior. Then, the number of 
individuals in one single frame was counted every 120 s. The average 
number of frames counted per video was 90. Previous trials ensured that 
temporal autocorrelation between frames is not relevant at this counting 
frequency (Follana-Berná et al., 2020). In practice, the reading was 
made easier by using video viewing software that jumped from the 
actual target frame to a few seconds just before the next target frame. 
Fish movement largely facilitated fish detection during these few sec-
onds, but only those fish that were strictly present at the target frame 
were counted. 

2.2. Explanatory variables: estimated fishing exposure, habitat, and depth 

The drivers of recreational fishing exposure tend to be complex, but 
they have been analyzed in depth in Palma Bay (March, 2014), which is 
well within the study area (Fig. 1). In Palma Bay, fishing exposure is 
modulated by weather (wave height), seasonality (temperature and day 
length), distance to coast, depth, sea bottom type, business/working day 
and fishing quality (yield, fish size and diversity), but the main driver is 
distance to ports (March, 2014). Provided that most of these variables 
are not available for some of the sampled sites outside Palma Bay, a new 
variable (estimated_ fishing_exposure) was estimated using distance to 
port only. Distance to port has also been used as a proxy of fishing 
exposure for explaining the spatial distribution of commercial fleets 
(Caddy and Carocci, 1999). 

The relationship between fishing exposure and distance to port in 
Palma Bay is clearly nonlinear, reaching a maximum at intermediate 
distances and decreasing toward both greater and closer distances to 
port (March, 2014). Therefore, a unimodal model for estimated_ 
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fishing_exposure was developed (Supplementary Material). The model 
was calibrated using the recreational fishing exposure (boat out-
ings/km2/year) provided by March (2014) for 143 sites in Palma Bay. 
Provided that the new variable (estimated_ fishing_exposure) was well 
correlated (r = 0.61) with fishing exposure in Palma Bay, we used the 
model for estimating estimated_ fishing_exposure at all sampled sites, but 
some caution should be exercised when translating estima-
ted_fishing_exposure to fishing exposure. 

As stated above, sea bottom type and depth are also expected to drive 
the density of most coastal fish. The depth of each exact point where a 
camera was deployed was extracted in situ using the boat’s probe. The 
sea bottom type at the exact point where a camera device was deployed 
was quantified using the percentage cover of three discrete types of 
substrate (Follana-Berná et al., 2020): (1) percentage of patches with 
sand to gravel; (2) percentage of rocks or rocky patches with many 
crevices and sharp slope changes, with or without small-sized algae; and 
(3) percentage of seagrass. These cover percentages were transformed 
according to Aitchison (1983). Finally, a principal component analysis 
was completed on the transformed percentages, and the PCA scores on 
the two resulting axes (habitat_1 and habitat_2) were used as explanatory 
variables summarizing the habitat characteristics. 

2.3. Modeling fish density 

One of the main challenges for translating fish count per frame into 
absolute density is to properly address environmental dependencies of 
detectability (P_detection, the probability of counting a fish that is 
actually within the surveyed area by the camera). Moreover, uncertainty 
in the detectability estimation must be properly propagated to the 

precision of fish density estimates. In the case of S. scriba, detectability 
was previously estimated to be 0.82, with a 95% Bayesian credibility 
interval between 0.52 and 0.99 (Follana-Berná et al., 2020). Moreover, 
P_detection has been demonstrated to be independent of sea bottom 
characteristics, at least within the environmental gradient considered 
(Follana-Berná et al., 2020). 

According to the theoretical framework developed by Campos- 
Candela et al. (2018), Countsi,j (the number of fish counted by the ith 
camera device at the jth frame, where i = 1–257 videos and j = 1 to 
approximately 90 frames per video, or 24,299 frames) has been assumed 
to be Poisson distributed (Campos-Candela et al., 2018; Follana-Berná 
et al., 2020, 2019): 

Countsi,j ∼ Poisson(Area_camera ∗ Densityi∗ P_detection) (1)  

where Densityi (fish/km2) is the fish density around camera i and 
Area_camera is the area surveyed by the camera, which was estimated 
with negligible error (5.0 m2). Fish density was modeled as a linear 
combination (at the log scale) of estimated_ fishing_exposure, the two 
quantitative variables describing habitat (habitat_1 and habitat_2), and 
depth. The correlations between these four variables were small (the 
largest Pearsońs r2 value was 0.06); thus, collinearity problems are not 
expected. A quadratic term was included for habitat_1, habitat_2, and 
depth to account for possible unimodal responses. Moreover, season was 
also included in the model, allowing for (1) different intercepts (be-
tween season differences) and (2) different slopes for the fishing expo-
sure in late spring versus late summer (i.e., an interaction term). Finally, 
two random effects were considered. First, fish density at the point 
where a camera device was deployed (camera) was allowed to be 

Fig. 2. Within-site and between-site variability for depth. Each boxplot corresponds to a site, and it shows the variability in depth between the exact positions where 
the 20 cameras from a site (10 cameras per season) were deployed. The line is the median, the upper and lower limits of the box represent the interquartile range, and 
whiskers represent 1.5 times the interquartile range of the box. 
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normally distributed around the site mean, with a common standard 
deviation (σcamera); thus, this random effect accounted for the between- 
camera variability at the site level that was not explained by the fixed 
factors. Second, the model intercept for a given site was allowed to be 
normally distributed (at the log scale) around a general intercept with a 
given standard deviation (σsite); thus, the latter random effect accounted 
for the between-site variability that was not explained by the fixed 
factors: 

log(density) = habitat 1 + habitat 12 + habitat 2 + habitat 22 + depth

+ depth2 + season + estimated fishing_exposure + season

∗ estimated fishing_exposure + site + camera
(2) 

The explanatory variables were standardized (subtracting the mean 
and dividing by the standard deviation). The parameters of this model 
(Eq. 1 and 2) were fitted using a Bayesian approach. Samples from the 
joint posterior distribution of the parameters given the data (fish counts) 
were obtained using STAN and the rstan library (Stan Development 
Team, 2020) in the R package (R Core Team, 2021). Uncertainty in 
P_detection was injected into the model after adjusting the posterior 
distribution reported by Follana-Berná et al. (2020) to a beta distribu-
tion, which was performed using the fitdistrplus library (Delignette--
Muller and Dutang, 2015) in the R package. The full code, the fish counts 
(response variable) and all explanatory variables are available at re-
pository https://doi.org/10.17632/8c5jwvkvsz.6. Four chains were run. 
Chain convergence was assessed by visual inspection of the chains and 
was evaluated using the Gelman-Rubin statistic (Gelman et al., 2015). 
Posterior distributions of the model parameters were estimated by 4000 
valid iterations after appropriate warm-up (the first 1000 iterations of 
each chain were discarded). 

3. Results 

The mean depth of all sampling sites was 13.3 ± 5.1 m. The depth 
range of the deployment points of the camera devices ranged from 2 m 
to 32 m (Fig. 2). 

The variable estimated_fishing_exposure (boat outings/km2/year) 
reached the highest values close to marinas (e.g., Es Molinar, S′Arenal 
and S′Estanyol; Fig. 3) and the lowest values in MPAs and at sites far from 
ports and marinas (i.e., El Toro, Cap Enderrocat, Sa Conillera, 
andCabrera). 

Regarding the habitat, the 257 exact points where cameras were 
deployed were classified according to seabed coverage (%), which after 
transformation and factorization (i.e., PCA) resulted in two axes 
(habitat_1 and habitat_2) that explained 57% and 43% of the variability, 
respectively (Fig. 4). 

Both axes were used as explanatory variables (Fig. 5). Axis 1 
(habitat_1) was related to the gradient between sand and rock. Axis 2 
(habitat_2) was related to the coverage of P. oceanica. Camera deploy-
ment points with large score displays covered close to 100%, while 
P. oceanica was almost absent at camera deployment points with small 
scores. Within-site variability was certainly noticeable. 

The parameters of the statistical model are detailed above (Eq. 1 and 
2) given that the counted number of fish per frame was successfully 
estimated (no divergences, E-BFMI indicated no pathological behavior, 
Rhat was always between 0.998 and 1.002, and the effective number of 
samples was always larger than 1000). A full table of the effect sizes of 
all variables included in the model and a full table of the estimates of fish 
density at each site are detailed in the Supplementary Material. 
Regarding the estimated densities of S. scriba (Fig. 6), the highest ab-
solute densities were found at Cabrera (median: 14,110 ind/km2; 95% 
Bayesian credibility interval, 95% BCI: 8245 to 27,836 fish/km2), fol-
lowed by Cap Blanc (5012 fish/km2, 95% BCI: 3021 to 9327 fish/km2) 

Fig. 3. Within-site and between-site variability for estimated_fishing_exposure (boat outings/km2/year). Each boxplot corresponds to a site, and it shows the 
variability in estimated_fishing_exposure between the exact positions where the 20 cameras from a site (10 cameras per season) were deployed. 
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and El Toro (4884 fish/km2, 95% BCI: 2655 to 9739 fish/km2). The 
lowest absolute densities were expected at Es Molinar (111 fish/km2, 
95% BCI: 6–1047 fish/km2), followed by Portals Vells (685 fish/km2, 
95% BCI: 304–1492 fish/km2) and S′Arenal(877 fish/km2, 95% BCI: 
279–2666 fish/km2) (Fig. 6). 

Concerning the variables included in the statistical model, the in-
tercepts for late spring and late summer did not differ between each 
other (95% BCI included zero; note that Season in Fig. 7 is the quantity 
that should be summed to the late spring intercept for obtaining the late 
summer intercept), suggesting that the average density across sites 
remained the same between the two seasons of a given year. 

However, relevant effects (95% BCI did not include zero) on fish 
density were detected for the slope of the habitat scores at the first 
dimension of the habitat descriptors and for its quadratic term (i.e., the 
response of fish density to the habitat gradient seemed to be a unimodal 
pattern). The slopes of the habitat scores in the second dimension were 
not relevant. According to these results, the worst habitat score for 
S. scriba along the habitat gradient sampled (Fig. 4 and Fig. 5) was 
− 0.37 (95% BCI: − 0.94 to 0.11), which corresponded to uniform Pos-
idonia meadows (Fig. 4). Fish density was expected to increase toward 
Posidonia meadows mixed with either rocks or sand (i.e., toward more 
heterogeneous habitats). The expected patterns when one explanatory 
variable by turn was allowed to change along the actual gradient while 
all other variables were kept constant at its average value are provided 
in Fig. 8A. 

Similarly, the effect of estimated_fishing_exposure on fish density was 
relevant (Fig. 7). In both seasons, the larger the estimated_fishing_exposure 
was, the smaller the fish density was expected to be, which suggests that 
fishing was correlated with a reduction in the site-specific (i.e., averaged 
across seasons) fish density (Fig. 8B). Interestingly, 95% BCI of the 
difference (not shown in Fig. 7) between these two slopes did include 

zero (95% CI interval: − 0.53 to 0.62), which strongly suggests that the 
interaction between season and exposure_to_fishing was not relevant and, 
thus, no short-term (between seasons) effects of fishing were detected. 

Finally, relevant effects (95% BCI did not include zero) on fish 
density were also detected regarding depth. In that case, provided that 
the effect of the quadratic term was not relevant, the existence of an 
optimal depth within the sampled depth gradient (Fig. 2) was not sup-
ported; thus, the deeper a site was, the smaller the fish density was ex-
pected to be (Fig. 6 and Fig. 8C). 

4. Discussion 

The feasibility of underwater video monitoring for estimating the 
absolute density (fish/km2) of coastal fish species was demonstrated. 
The absolute density of a small serranid (S. scriba) was estimated along 
the southern coast of Mallorca Island (nearly 100 km) with an affordable 
sampling effort (approximately 30 fieldwork days, or one day per site/ 
season). Therefore, the proposed framework (i.e., (1) using vertical 
unbaited cameras, (2) counting fish per frame (one frame per period), 
and (3) analyzing the counts using the proposed statistical analysis, 
which includes (4) an independent estimate of fish detectability) rep-
resents a realistic approach for long-term monitoring of coastal fish at 
temporal and spatial scales that are relevant for adopting management 
decisions (i.e., at the mesoscale). In addition, the capability of the pro-
posed framework for exploring the ecological drivers that explain fish 
density was also demonstrated. Certainly, the effects of habitat, fishing, 
and depth on coastal fish density are well known (Geraldi et al., 2019). 
Thus, the relevance here is that this framework seems fully capable of 
generating the data needed for testing other ecologically sound hy-
potheses with enlarged statistical power and at an affordable cost. 

The proposed framework implies monitoring with vertical unbaited 

Fig. 4. PCA habitat scores. The images over Axis 1 (habitat_1) correspond to the camera deployment points displaying the largest and smallest scores, respectively. 
The images over Axis 2 (habitat_2) correspond to the camera deployment points displaying the largest, median, and smallest score. 
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cameras, which seems to be robust against the biases affecting other 
fishery-dependent sampling methods and other camera settings (e.g., 
horizontal cameras and baited cameras). The advantages and limitations 
of the vertical unbaited cameras are compared against the two fishery- 
independent methods most commonly used for monitoring coastal fish 
at similar temporal and spatial scales (baited cameras and UVC;  
Table 1). Cameras with horizontal field views are not explicitly included 
in Table 1 because irrespective of using bait or not, they suffer from a 
problem in which measuring the area surveyed is difficult or impossible 
(Sheaves et al., 2020). Although the area surveyed by a vertical camera 
can experience slight variations depending on substrate roughness and 
the precision when identifying area limits in a belt census depends on 
diver training, these uncertainties are negligible when compared with 
those from horizontal cameras. Apart from this, the advantages and 
limitations of horizontal cameras are those linked with the use of bait or 
not (Table 1). 

Some generic advantages of cameras over visual censuses are the 
reduced risks for the staff (divers) and the wider gradient of extreme 
habitats that can be safely sampled (Mallet and Pelletier, 2014). Cam-
eras also allow rechecking the interpretation of the videos (fish counts 
and species identification). Cost is certainly more difficult to compare, 
but overall, the initial investment of diver equipment and its mainte-
nance seems larger when compared with action cameras, which are 
quickly becoming more affordable and with better quality. Thus, the 
number of cameras, the deployment time, or the area surveyed by a 

camera will not be an economically limiting factor in the near future 
(Aguzzi et al., 2020b, 2020a, 2015; Campos-Candela et al., 2019; Mat-
abos et al., 2015, 2014; Struthers et al., 2015). The training cost of the 
divers and the staff cost per sample (fieldwork) are larger than those of 
the cameras. 

Both visual censuses and vertical unbaited cameras can produce 
unbiased estimates of absolute fish density after species-specific fish 
detectability has been estimated. Detectability should preferably be 
estimated in an independent field survey (Follana-Berná et al., 2020, 
2019; MacNeil et al., 2008; Pollock et al., 2002), but concurrent sam-
pling with visual censuses and cameras offers a unique opportunity for 
intercalibration (Follana-Berná et al., 2019). Detectability estimation is 
species-specific and may need ad hoc solutions (Follana-Berná et al., 
2020), but it is feasible to model environmental dependencies 
(Follana-Berná et al., 2020, 2019) and, thus, properly account for 
potentially confounding effects such as those related to water turbidity 
(Figueroa-Pico et al., 2020). Similarly, the area surveyed by visual 
censuses and vertical unbaited cameras can be measured with no or 
small error, thus allowing us to link fish counts to an area unit. As stated 
above, this is a major handicap of any camera setting with a horizontal 
field view. 

Both visual censuses and vertical unbaited cameras can theoretically 
reach any target precision, but the number of samples needed may be 
unaffordable (Abolaffio et al., 2019). Nevertheless, this problem is 
exacerbated in the case of visual censuses because the cost per sample is 

Fig. 5. Within-site and between-site variability for habitat_1 and habitat_2. Each boxplot corresponds to a site, and they show the variability in habitat_1 and 
habitat_2 between the exact positions where the 20 cameras from a site (10 cameras per season) were deployed. 
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larger. It should be noted here that the number of fish per frame follows 
an ergodic process concerning time and space, provided that fish density 
is constant at the surveyed temporal scale and that swimming speed 
ensures that fish counts can be performed at a frequency that ensures 
temporal independence between two consecutively counted frames 
(Campos-Candela et al., 2018). These assumptions seem to meet at the 
one-day temporal scale of sampling used here and for most coastal fish 
displaying a home-range pattern of space occupation, which is orders of 
magnitude larger than the area surveyed by the camera (Alós et al., 
2016; Arechavala-lopez et al., 2019; Follana-Berná et al., 2020; Jadot 
et al., 2006; Jones, 2005; March et al., 2010; Palmer et al., 2011). 
Therefore, in terms of the accuracy and precision of fish density esti-
mates, time and space can be interchanged, provided that the consecu-
tive samples of the same surface remain temporally uncorrelated. In the 
case of S. scriba, no temporal autocorrelation was detected when 
counting fish every 120 s. Therefore, the effective area sampled by belt 
visual censuses (typically, in a range of 1000 m2/day, assuming 4 cen-
suses per day that are 50 m long and 5 m wide) may be even smaller 
than the effective area surveyed by the camera settings used here 
(4500 m2/day: 90 frames per camera, 10 cameras, and 5.0 m2). Com-
puter simulation experiments suggest that the later sampling setting 
ensures a target accuracy of approximately 90% for S. scriba and for 
other coastal benthic fish displaying similar movement patterns (Cam-
pos-Candela et al., 2018; Follana-Berná et al., 2020, 2019). Neverthe-
less, some adjustment in the sampling setting will be needed for fish with 
a very narrow home range and/or very slow swimming speed. In those 
cases, temporal independence of consecutive counted frames can be 
achieved by reducing the number of counted frames per video and 
enlarging the number of cameras. On the other hand, pelagic fish usually 
do not meet the assumption of steady fish density at the space-time scale 

of sampling; thus, the proposed framework would be useless in those 
cases. However, with some species-specific exceptions, the use of ver-
tical unbaited cameras and the proposed framework emerges as a 
plausible method for monitoring fish abundance at large spatial (as re-
ported here) or temporal scales (e.g., permanent underwater observa-
tories; Aguzzi et al., 2020a; Matabos et al., 2014). 

The use of baited cameras is certainly widespread, but it is also well 
known that the fish counts provided by this method are biased (Cheal 
et al., 2021). To see more fish does not mean that the counted fish re-
flects the actual density. Bait interferes with fish behavior, and the 
attraction strength may depend on the bait characteristics (Ghazilou 
et al., 2016), hydrography of the area, dynamics of the odor plume 
(Taylor et al., 2013), species specificities (e.g., species-specific olfactory 
capability; carnivores versus herbivores, etc.) or even individual speci-
ficities (competitive interactions at either within- and between-species, 
satiety, or many other processes) (Bassett and Montgomery, 2011; 
Stoner, 2004). Certainly, some interesting attempts to model attraction 
dynamics have been made (Dunlop et al., 2015; Vabø et al., 2004), but 
the multiple processes involved and their complexity make it difficult to 
generalize a method for linking fish density with the fish counts recor-
ded by a baited camera. Unbaited cameras and UVCs can also trigger 
some species- or individual-specific abnormal behavior (e.g., diver 
presence may trigger flight or hiding behavior; Pierucci and Cózar, 
2015; Willis et al., 2000), but the responses would not be comparable 
with those of the baited cameras. An extreme case of potential bias could 
be permanent underwater observatories (e.g., https://imedea.uib-csic. 
es/sites/sub-eye/home_es/) that may act as artificial reefs (Aguzzi 
et al., 2015, 2020a,b). These potential drawbacks should be further and 
carefully analyzed, but they are expected to be minimized with, for 
example, the sampling settings adopted here (discarding the few 

Fig. 6. Fish density (ind/km2). The red dots indicate the mean of the Bayesian posterior distribution; the black line indicates the median. Precision is denoted by the 
width of the box (interquartile range of the Bayesian posterior distribution) and the whiskers (1.5 times the interquartile range). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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minutes of video after the device lands on the seafloor and sampling 
during only a few hours). 

Video postprocessing has been adduced as one of the major disad-
vantages of cameras in regard to censuses (Mallet and Pelletier, 2014). 
However, deep learning algorithms (Connolly et al., 2021; Ditria, 2020; 
Salman et al., 2019; Tabak et al., 2019) for automatically extracting 
information from fish images and videos are currently exploding in use 
(Álvarez-Ellacuría et al., 2019; Connolly et al., 2021; Martorell-Barceló 
et al., 2021; Moen et al., 2018; Palmer et al., 2022). Some operational (i. 
e., real-time) applications for counting fish may even be plausible soon 
(Meng et al., 2018), which may circumvent the memory bottleneck for 
video storage. Thus, it is expected that postprocessing time and effort 
may drop in the near future. Relatedly, it could be adduced that species 
identity may be easier to determine using cameras with a horizontal 

view. We recognize that this may be a drawback for some species. 
However, at least in our case, species identity can be determined from 
the top without doubt after some training of the observer; thus, it is 
expected that deep learning algorithms will be able to manage species 
identification even for challenging cases. 

As stated above, absolute density, in addition to the obvious ad-
vantages when modeling population dynamics for informing manage-
ment decisions, allows proper comparison between studies (Cheal et al., 
2021). However, if fish detectability is not estimated, such a comparison 
should be done with some caution. Nevertheless, the figures provided by 
underwater censuses in the same region (Balearic Islands) seem com-
parable with the figures reported here, which suggests a high fish 
detectability of underwater censuses for S. scriba. For example, the 
densities of S. scriba on the northern coast of Mallorca Island (5000 

Fig. 7. Estimates of the size effects on 
fish density for all fixed variables 
included in the model. The gray areas 
denote the area of the distribution outside 
the 95% of the Bayesian posterior distri-
butions. Estimated_fishing_exposure- 
spring and estimated_fishing_exposure- 
summer denote the season-specific 
slopes for estimated_fishing_exposure, 
and they relate to the interaction between 
estimated_fishing_exposure and season. 
Moreover, season denotes the size effect 
to be summed to the spring intercept to 
obtain the summer intercept. The vertical 
red line indicates no effect. The relevant 
effects were habitat_1, habitat_12, depth, 
and estimated_fishing_exposure. Howev-
er, for the last variable, there were no 
relevant differences between spring and 
summer. (For interpretation of the refer-
ences to colour in this figure legend, the 
reader is referred to the web version of 
this article.)   

Fig. 8. Description of expected effects on fish density of A) habitat_1, B) estimated_fishing_exposure and C) depth.  
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ind/km2; Ordines et al., 2005), on the southwestern coast of Mallorca 
(11,300–18,500 ind/km2; Deudero et al., 2008) or Cabrera (south of 
Mallorca; from 6400 to 22,400 ind/km2; Reñones et al., 1997) fall 
within the densities estimated here. Similarly, the environmental pref-
erences deduced from these studies fully agree with those reported here 
(e.g., S. scriba seems more abundant in shallow, heterogeneous Posidonia 
meadows), except in the case of Deudero et al. (2008), who suggested 
that the abundance of S. scriba was larger at deeper sites. The presence of 
rocks per se seems insufficient for enhancing density because S. scriba 
inhabits artificial reefs on seagrass meadows but is absent from the 
artificial reefs located in nearby sandy areas (Coll et al., 1998). 

Similarly, the abundance and environmental preferences of S. scriba 
estimated from visual censuses in other Mediterranean regions are 
similar to those reported here: in the western Mediterranean (Serra 
Gelada: between 2000 and 14,500 ind/km2; Arechavala-lopez et al., 
2008; and Cabo de Palos: 10,200 ind/km2; García-Charton and 
Pérez-Ruzafa, 2001); in the Adriatic Sea (between 4000 and 27,000 
ind/km2 on shallow rocky algal reefs, whereas lower density was re-
ported in uniform P. oceanica meadows; Bonaca and Lipej, 2005); on the 
southeastern coasts of Italy (27,500 ind/km2 in P. oceanica meadows and 
17,500 ind/km2 on rocky-algal reefs; Guidetti, 2000), or in the central 
Aegean Sea, where S. scriba displays habitat preferences similar to those 
reported here (Giakoumi and Kokkoris, 2013). Interestingly, also in 
agreement with the results reported here, S. scriba densities in marine 
protected areas seem larger than those in nonprotected areas (Guidetti 
et al., 2005). 

The between-site variation reported here is well explained by three 

of the explanatory variables considered (fishing exposure, depth, and 
habitat characteristics). Certainly, recreational fishing exposure is 
difficult to estimate and, as mentioned above, can be affected by many 
factors. However, in our case, distance to port seems to be the main 
driver; thus, we estimated recreational fishing exposure from distance to 
port only. Although the model for estimating fishing exposure was 
calibrated with data based on observations in the same area (March, 
2014) and the resulting variable (estimated_ fishing_exposure) was well 
correlated with fishing exposure, the results reported should be inter-
preted with some caution. Moreover, the correlational nature of this 
study precludes explicitly suggesting a cause-and-effect relationship 
between fish density and fishing exposure, but our results indicate that 
sites with smaller estimated_ fishing_exposure hold larger S. scriba den-
sities. The same pattern has been described in the same area and for the 
same species (Alós and Arlinghaus, 2013; March et al., 2014). 

Thus, assuming that estimated_ fishing_exposure is a proper surrogate 
of fishing exposure, the sites with the highest density of S. scriba den-
sities (i.e., Cabrera, El Toro, and Cap Blanc) display large patches of 
suitable habitats and experience no or very low fishing exposure (Fig. 3, 
Fig. 4, Fig. 5). Recreational fishing is banned at Cabrera and is limited at 
El Toro (partial MPA but far from any port) and Cap Blanc (open site to 
fishing but far from any port). Sites with intermediate density display 
either low estimated_fishing_exposure values or large patches of suitable 
habitat for S. scriba. In the case of the MPA at Cap Enderrocat, the large 
number of harbors and marinas in Palma Bay may counteract the soft 
fishing limitations (fishing is allowed 4 days per week in most protected 
areas). The relatively low density estimated at Sa Dragonera deserves 
special attention because it is environmentally suitable for S. scriba, but 
it is subject to a relatively important recreational fishing exposure. 
However, this area has been recently declared a MPA (in 2019), just 
before the fieldwork reported here was completed. Therefore, this site 
offers a unique opportunity for monitoring fish density in the coming 
years and testing the effects of the establishment of the new fishing 
limitations. Finally, the smallest densities were found at sites displaying 
both a smaller proportion of optimally suitable habitat and larger values 
of estimated_fishing_exposure (Es Molinar and S′Arenal). 

The sampling plan was specifically designed for discriminating short- 
term effects (i.e., between seasons in the same year) from site-specific 
effects (i.e., long-term effects) by monitoring the same sites before and 
after summer, which is when most recreational fishing activity occurs in 
Mallorca (Cabanellas-Reboredo et al., 2014; March, 2014; March et al., 
2014). Therefore, short-term effects can be assessed by comparing the 
between-season differences in density along a gradient of fishing expo-
sure (i.e., larger decreases in density are expected at sites more exposed 
to fishing). As stated above, the hypothesis of site specific, long-term 
effects of fishing seems supported by the results, but no short-term ef-
fect was detected. A plausible explanation for this may be that the few 
remaining S. scriba at heavily exploited sites were almost invulnerable to 
the recreational fishing gear; thus, the number of fish at those sites 
would remain constant after the increase in fishing exposure during 
summer. The existence of a spatial pattern in vulnerability (fish are less 
vulnerable to fishing gear along a gradient of fishing) has already been 
described for the same species and area (Alós et al., 2015b) and should 
be a note of caution against the use of catch-per-unit-effort (i.e., 
fishery-dependent data) as a surrogate of fish abundance (Alós et al., 
2019; Monk et al., 2021) because hyper-depletion processes may give 
the wrong impression that fish abundance is smaller than it actually is 
(Ahrens and Walters, 2005; Hilborn and Walters, 2013). 

The model for explaining the fish density of S. scriba presented here 
could also be used to map fish density along the southern coast of 
Mallorca. Moreover, the Bayesian approach developed is particularly 
suitable for producing maps of the credibility interval (precision) of fish 
density. These maps would be of primary interest for deriving stock 
status and for designing proper management plans. However, reliable 
maps for two out of the three environmental variables in the model are 
difficult to obtain. As mentioned above, accurately estimating 

Table 1 
Subjective comparison between underwater visual censuses and cameras (baited 
and unbaited).   

Visual censuses Baited cameras Unbaited 
cameras 

Risk to the 
observer 

Medium-High No No 

Suitable in 
extreme 
habitats 

No Yes Yes 

Disturbances to 
fauna/habitat 

Soft Soft Negligible 

Disturbances to 
fish behavior 

Yes, due to diver 
presence 

Yes, due to bait Soft 

Absolute density Yes, after estimating 
detectability 

No Yes, after 
estimating 
detectability 

Accuracy Acceptable. Some 
species can be 
underestimated (fear) 
or overestimated 
(attraction) 

Biased Acceptable. 
Possible bias for 
cryptic and/or 
static species 

Precision Acceptable but at a 
larger cost 

Unknown Acceptable 

Review/check is 
possible 

No Yes Yes 

Appropriate at a 
long temporal 
scale 

Yes, but at a larger cost Yes Yes 

Appropriate at a 
long spatial 
scale 

Yes, but at a larger cost Yes Yes 

Cost: Initial 
investment 

High Medium and 
falling 

Medium and 
falling 

Cost: Equipment 
maintenance 

High Medium Medium 

Cost: Training Very high Medium Medium 
Staff cost per 

sample 
High Medium Medium 

Cost: 
Postprocessing 

Low High, but 
expected to 
drop with deep 
learning 
algorithms 

High, but 
expected to drop 
with deep 
learning 
algorithms  
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recreational fishing exposure is challenging. Estimating sea bottom 
characteristics is a priori more easily affordable, but the maps available 
for the study area are partial (e.g., marine reserves) or the spatial detail 
is too coarse. 

In summary, despite several difficulties, the results reported here 
suggest that monitoring absolute fish density with vertical unbaited 
cameras at large spatial and temporal scales can be a reliable alternative 
in the near future. The proposed monitoring framework may strongly 
benefit from the complementary role of diver censuses, and a combi-
nation of underwater cameras and artificial intelligence may represent a 
unique opportunity for a qualitative jump in the way marine wildlife is 
observed. 
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Empirical evidence for species-specific export of fish naïveté from a no-take marine 
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Reñones, O., Moranta, J., Coll, J., Morales-Nin, B., 1997. Rocky bottom fish communities 
of Cabrera Archipelago National Park (Mallorca, Western Mediterranean). Sci. Mar. 
61, 495–506. 

Salman, A., Siddiqui, S.A., Shafait, F., Mian, A., Shortis, M.R., Khurshid, K., Ulges, A., 
Schwanecke, U., 2019. Automatic fish detection in underwater videos by a deep 
neural network-based hybrid motion learning system. ICES J. Mar. Sci. doi:10.1093/ 
icesjms/fsz025.  

Saul, S., Brooks, E.N., Die, D., 2020. How fisher behavior can bias stock assessment: 
insights from an agent-based modeling approach. Can. J. Fish. Aquat. Sci. 77, 
1794–1809. https://doi.org/10.1139/cjfas-2019-0025. 

Sheaves, M., Bradley, M., Herrera, C., Mattone, C., Lennard, C., Sheaves, J., 
Konovalov, D.A., 2020. Optimizing video sampling for juvenile fish surveys: Using 
deep learning and evaluation of assumptions to produce critical fisheries parameters. 
Fish Fish 1–18. https://doi.org/10.1111/faf.12501. 

Simmonds, E.J., 2007. Comparison of two periods of North Sea herring stock 
management: success, failure, and monetary value. ICES J. Mar. Sci. 64, 686–692. 
https://doi.org/10.1093/icesjms/fsm045. 
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