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Rising human population, along with the reduction in arable land and the impacts of
global change, sets out the need for continuously improving agricultural resource use effi-
ciency and crop yield (CY). Bioengineering approaches for photosynthesis optimization
have largely demonstrated the potential for enhancing CY. This review is focused on the
improvement of Rubisco functioning, which catalyzes the rate-limiting step of CO2 fixation
required for plant growth, but also catalyzes the ribulose-bisphosphate oxygenation initi-
ating the carbon and energy wasteful photorespiration pathway. Rubisco carboxylation
capacity can be enhanced by engineering the Rubisco large and/or small subunit genes
to improve its catalytic traits, or by engineering the mechanisms that provide enhanced
Rubisco expression, activation and/or elevated [CO2] around the active sites to favor
carboxylation over oxygenation. Recent advances have been made in the expression,
assembly and activation of foreign (either natural or mutant) faster and/or more CO2-spe-
cific Rubisco versions. Some components of CO2 concentrating mechanisms (CCMs)
from bacteria, algae and C4 plants has been successfully expressed in tobacco and rice.
Still, none of the transformed plant lines expressing foreign Rubisco versions and/or sim-
plified CCM components were able to grow faster than wild type plants under present
atmospheric [CO2] and optimum conditions. However, the results obtained up to date
suggest that it might be achievable in the near future. In addition, photosynthetic and
yield improvements have already been observed when manipulating Rubisco quantity
and activation degree in crops. Therefore, engineering Rubisco carboxylation capacity
continues being a promising target for the improvement in photosynthesis and yield.

Introduction
Crop yield (CY) must be double by 2050 to meet the food and bioenergy demands of a rising world
population [1,2]. The accelerated impacts of global change, which includes rising global temperatures
and more extreme events, together with a reduction in arable land and water availability are major
threats for plant production [3,4]. Therefore, current efforts are focused on increasing CY per unit
area to enhance resource use efficiency and avoid expanding agricultural land use at the expenses of
natural habitats [5].
The CY depends on the efficiency of light energy interception, the efficiency of light energy conver-

sion into biomass (photosynthesis) and the way carbon is partitioned within the plant into harvested
organs. In the last decades, crop breeding has extraordinarily increased yields via processes that opti-
mized carbon partitioning and light energy interception, but the efficiency of photosynthesis remained
unaltered [6]. Actually, the efficiency of photosynthesis is the only factor that is far from being at its
maximum potential, and therefore remains a target of improvement towards the optimization of CY
[7–11]. In this sense, about 3–4% of intercepted photosynthetically active radiation is converted in
new biomass at optimum conditions in the field, which represents approximately one-third of the
potential maximum energy conversion efficiency that can be attained theoretically [12].
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Increased CY has been widely observed in plants grown under CO2 enrichment conditions showing enhance-
ment of photosynthetic CO2 assimilation [13,14], indicating that there is the place for substantial improvements
in CY through optimization of photosynthesis. In addition, cross-scale modeling, validated using data from
diverse field experiments, also evidenced the potential for CY improvement through engineering photosynthesis
[9,15].
The photosynthetic process consists of a series of biochemical reactions that use light energy to fix CO2 into

sugars. First, light energy is harvested by chlorophylls and accessory pigments and transformed in excited elec-
trons that are involved in a sequence of redox reactions (transport of electrons) leading to the synthesis of
chemical energy (ATP) and reducing power (NADPH2). Second, the synthetized ATP and NADPH2 are con-
sumed in the Calvin–Benson cycle to reduce CO2 to trioses phosphates in the chloroplast stroma, that are
finally exported out of the chloroplast and used as carbon skeletons for building new biomolecules and to cover
the energetic requirements of the plant.
One of the most critical and regulated steps of the photosynthetic process is the CO2 fixation catalyzed by

the enzyme Ribulose-bisphosphate carboxylase oxygenase (Rubisco), consisting of the addition of CO2 to
Ribulose-1,5-biphosphate (RuBP) to produce two molecules of 3-phosphoglycerate (3-PGA). This enzyme pos-
sesses a slow carboxylation turnover rate (kcat

c ) and a relatively low affinity for CO2 (i.e. relatively high Kc,
which is the Michaelis–Menten constant for CO2 in the absence of O2). Moreover, Rubisco not only catalyzes
the addition of CO2 to RuBP (carboxylation), but also the addition of O2 (oxygenation), producing one mol-
ecule of 3-PGA and one molecule of 2-phosphoglycolate (2-PG). The latter will be metabolized through photo-
respiration, a metabolic pathway that will recover only part of the carbon contained in 2-PG molecules,
provoking a net loss of fixed carbon with an extra energy investment [16], and therefore, decreasing the effi-
ciency of photosynthesis. These ‘inefficient’ catalytic properties explain the large amounts of Rubisco found in
C3 plants (20–50% of leaf soluble proteins [17]), and the consequent demand for a substantial N investment.
Previous studies suggested that increases in Rubisco carboxylation capacity can considerably enhance photo-

synthesis [4,18], which is supported by the significant enhancement of photosynthetic CO2 assimilation fre-
quently observed in plants grown under CO2 enrichment conditions [13,14], as mentioned above. This review
will focus on recent bioengineering approaches to improve photosynthesis by enhancing Rubisco CO2 fixation
capacity, therefore, increasing the synthesis of carbohydrates required for plant growth and yield.
Manipulations to enhance Rubisco carboxylation capacity includes improvements in Rubisco kinetic traits, the
increase in [CO2] around Rubisco to limit its oxygenation through the introduction of CO2 concentrating
mechanisms (CCMs), and the modification of Rubisco expression and degree of activation (see Figure 1).

Improving Rubisco kinetic traits
Rubisco catalyzes the main entrance of inorganic carbon into the biosphere, therefore it sustains most trophic
webs on Earth. Due to its essential role in carbon assimilation and ‘inefficient’ catalytic properties, Rubisco per-
formance has been and continues to be one of the main targets to be engineered for improving photosynthesis
to increase plant biomass productivity and yield [10,18–21]. Ideally, Rubiscos with a combination of elevated
kcat
c , high carboxylation efficiency (kcat

c /Kc), and elevated specificity factor of CO2 over O2 (Sc/o) are the most
desirable to be engineered in crops [22], replacing their native Rubiscos.
The improvement of Rubisco kinetic traits entails the exploration of more efficient naturally occurring ver-

sions of Rubisco, and the understanding of the molecular causes of variability in the catalytic traits, allowing
the design of improved Rubiscos in the laboratory [23]. In either case, the improved (either natural or artificial)
Rubisco versions must be successfully transplanted into crops (see Figure 1A), which is a complex challenge
that still requires in many cases a better understanding of chloroplast gene regulatory pathways as well as
Rubisco folding and assembly, although significant advances in plastid transformation has been achieved
[20,24,25].

Screening natural diversity
Rubisco is present in all domains of life (Archaea, Bacteria and Eukarya) with different forms (I, II, II/III, III).
All Rubisco types are composed of dimers of two large subunits (L2) to produce functional active sites, while
form I Rubisco also includes small subunits in a L8S8 stoichiometry [26]. Form I Rubisco can be classified in
the ‘green type’ (form IA and IB) and ‘red type’ (form IC and ID) lineages. The only types found in eukaryotes
are form IB in green algae and plants, and form ID in non-green algae, except for peridinin-containing dinofla-
gellates, that possess form II. Form II Rubisco is also found in photoautotrophic or chemoautotrophic
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Figure 1. Potential targets to increase Rubisco carboxylation capacity in crops.

Which includes improvements in Rubisco kinetic traits through the replacement of native rbcL and/or RbcS by natural or mutant more efficient

Rubisco versions (A); the introduction of biophysical (B) or biochemical (C) CO2 concentrating mechanisms (CCMs) to optimize Rubisco

carboxylation and limit its oxygenation, therefore reducing photorespiration; and the modification of Rubisco/Rubisco activase expression and

replacement of native Rubisco activases by more thermotolerant versions (D). PEP: phosphoenolpyruvate; G3P: glyceraldehyde-3-phosphate; 2PG:

2-phosphoglycolate; Rca: nucleus gene coding Rubisco activase; rcbL: plastome-encoded Rubisco large subunit gene; RcbS: nucleus-encoded

Rubisco small subunit genes.
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proteobacteria, whereas form III and II/III are found in Archaea and Bacteria, and are usually not involved in
autotrophic carbon assimilation pathways [26–28]. Despite possessing 19 conserved amino acids residues essen-
tial for catalysis [29], Rubiscos from different forms and phylogenetic groups showed strong differences in their
catalytic traits, as a result of different selective pressures during evolution [27].
The characterization of Rubisco kinetic traits from a broader number of phylogenetically distant species in

the last decades (reviewed by Iñiguez et al. [27]) has increased the possibility to find more efficient Rubisco ver-
sions in Nature to be engineered in crops for potential CO2 assimilation improvement.
The few analyzed red algae have shown to possess the highest Sc/o and carboxylation efficiency (kcat

c /Kc) ever
reported [30–32], and models reveal a potential benefit for CO2 assimilation rate and plant growth of up to
30% [4] at ambient conditions, if crops native Rubiscos are replaced by these more efficient Rubisco versions
[20]. Nevertheless, green-type and red-type Rubiscos strongly differ in their folding, assembly and regulation
requirements [33,34], which has still prevented form ID Rubiscos to be expressed in transplantomic plant lines
[32,35]. Specifically, this is due to the inability of plant ancillary chaperones to recognize foreign form ID
Rubisco subunits. A substantial recent advance has been the successful expression and activation of a red-type
Rubisco from the proteobacterium Rhodobacter sphaeroides (form IC) in transplantomic tobacco lines [25].
This plant lines expressed a chloroplastic operon containing the large (rbcL) and small subunit (RbcS) genes
from R. sphaeroides and included a nuclear transformation with the metabolic repair protein CbbX, an AAA+
protein (ATPase associated with various cellular activities) which act as a red-type Rubisco activase [25,33].
Although these transplantomic Rubisco lines need to be grown under elevated CO2 conditions due to the low
affinity for CO2 of R. sphaeroides Rubisco, it will serve as a platform to integrate potential catalysis-enhancing
structural elements from Form ID Rubisco by phylogenetic grafting. Efforts in this direction are sustained on
the structural similarity between form IC and ID Rubisco, which has already allowed the successful assembly of
hybrid R. sphaeroides large subunit and form ID small subunit in tobacco chloroplast [25], even though the
produced hybrid Rubiscos were catalytically incompetent.
The highest carboxylation turnover rates (kcat

c ) so far reported have recently been found in proteobacteria
possessing form II Rubiscos, with a maximum of 22 s−1 obtained for Gallionella sp. (more than 6-fold faster
than the mean for plant Rubiscos [36]). However, in order to support elevated photosynthetic rates under
environmental conditions, the Gallionella Rubisco variant would require operating along with CCMs within the
transplantomic plant (see the section below), due to its low affinity and low specificity for CO2 (Kc = 276 mM;
Sc/o = 10).
It has been previously suggested that plant Rubisco catalytic traits are already optimized and cannot be

improved, since the active site chemistry constrains the enzyme’s evolution [37,38], meaning that the canonical
trade-offs between kcat

c and Kc and between kcat
c and Sc/o would impede to find faster and more CO2-specific

Rubisco versions. Still, recent studies suggested that Rubisco carboxylation kinetics are not so constrained
[27,39–41], and so it might be possible to find improved Rubisco versions in Nature, with enhanced kcat

c , Sc/o
and kcat

c /Kc than crop Rubiscos. The systematic survey of kinetic traits by mining metagenomic data to search
for natural undiscovered Rubiscos [36] might become a useful tool to find faster and more CO2-specific var-
iants for crop photosynthesis improvement programs.
For improving crop photosynthesis, the temperature response of Rubisco catalytic traits must be also consid-

ered. A recent study [23] revealed a large natural variability in the thermal responses of Rubisco kinetic traits
in higher plant species, related to their photosynthetic type and adaptation to the species thermal environment,
and the authors identified some variants with the potential to improve Rubisco-limited CO2 gross assimilation
rate in crops under future climatic conditions.

Selecting improved Rubisco mutant versions through directed evolution
Another interesting bioengineering tool for finding improved Rubisco versions consists of the application of
screening systems to study the artificial evolution of Rubisco. The development of directed protein evolution
approaches to search for Rubisco versions with improved catalytic properties from a mutant library comprising
sufficient genetic diversity can reveal novel fitness solutions that would otherwise be unexplored during natural
evolution [42].
Through directed evolution approaches using Rubisco dependent Escherichia coli (RDE) selection, catalytic

improvements have been observed in form I, II and III Rubisco mutants during the last years. Relative to form
I Rubiscos, a cyanobacterial Synechocystis PCC6803 Rubisco mutant with 3-fold improvements in carboxylation
efficiency was obtained by Duraõ et al. [43], that improved photosynthesis rates by more than 50% relative to
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the wild type (WT), when re-integrated into the cyanobacterium carboxysome. Wilson et al. [44] identified a
cyanobacterial Thermosynechococcus elongatus Rubisco mutant with improved kcat

c by 28%, enhanced carboxyl-
ation efficiency under ambient [O2] (kcat

c /Kc
air) by 43%, and improved Sc/o by 6%, relative to WT, although the

Rubisco mutant expression in tobacco transplantomic lines was unsuccessful. Recently, Zhou and Whitney [45]
identified an R. sphaeroides Rubisco mutant with improved kcat

c and kcat
c /Kc

air by 27% and 17%, respectively, rela-
tive to WT, even though the mutations led to a 40% lower capacity for Rubisco accumulation in the host E.
coli. Form III from the archaea Methanococcoides burtonii has also been subjected to directed evolution. The
selected mutants from this non-photosynthetic Rubisco showed 2 and 3-fold higher kcat

c and kcat
c /Kc

air, respect-
ively, relative to WT Rubisco, along with a 15% increase in Sc/o [46]. When the selected Rubisco mutants were
transformed in tobacco, a strong increase in photosynthesis and growth relative to tobacco controls producing
WT M. burtonii Rubisco was also observed. Therefore, Wilson et al. [46] revealed that carboxylation kinetics
from archaeal Rubiscos could be easily enhanced by single aminoacid changes due to its evolutionary special-
ization in an alternative non-photosynthetic metabolic role, and advantage can be taken from the extremely
thermotolerance of some archaeal Rubiscos [47,48] and its elevated affinity for RuBP [46]. Improvements in
form II carboxylation kinetics by directed evolution has been limited, although mutant versions of the proteo-
bacterial Rhodospirillum rubrum Rubisco with increased thermotolerance and biogenesis capacity have been
identified [49].
Despite all the kinetics improvements previously described for bacterial form I, form II, and archaeal form

III mutant Rubisco versions relative to WT enzymes, their carboxylation efficiencies and Sc/o are still too low to
improve photosynthesis in crop chloroplasts at the current atmospheric [CO2]. This is the main problem that
has prevented from obtaining transformed plants with improved carboxylation capacity yet. Nevertheless, con-
tinued directed evolution of bacterial or archaeal Rubiscos confers promising avenues for potential enhance-
ment of leaf photosynthesis and plant growth. In addition, recombinantly expressed form II and form III
Rubiscos, that are structurally simpler than form I, are often successfully assembled and activated in model
hosts like E. coli or Nicotiana tabacum [36,46]. The main limitations for developing directed evolution
approaches in eukaryotic form I Rubiscos (L8S8) was related to the fact that their folding and assembly depend
on the co-expression of specific ancillary chaperones [50]. Recently, functional plant Rubisco from Arabidopsis
thaliana was produced in E. coli through the co-expression of five chloroplast chaperones, including Cpn60/
Cpn20, Rubisco accumulation factors 1 (raf1) and 2 (raf2), RbcX, and bundle-sheath defective-2 (BSD2)
[51,52]. The developed E. coli system has already been successfully adapted for the expression of recombinant
tobacco Rubiscos [53]. This important advance will allow the selection of improved Rubisco mutants of eukary-
otic form I Rubiscos in future studies by directed evolution approaches, with much higher Sc/o and/or carboxyl-
ation efficiencies than native crop Rubiscos.

Engineering Rubisco large or small subunit
Viable transplantomic plant lines expressing functional foreign form I Rubiscos have been carried out by
chloroplast transformation, using the foreign rbcL–RbcS operon that replaced native rbcL gene [24,25,54]
(Figure 1A), along with specific assembly factors involved in Rubisco biogenesis. However, chloroplast trans-
formation technology has been only available in tobacco, not in other important crops such as wheat, rice or
cotton [20,55], but recent advances in plastid transformation technology for the model plant A. thaliana [56]
has opened the door for other recalcitrant crop species.
Rubisco large subunit contains the essential amino acids for active site conformation [57], and some amino

acids from the Rubisco large subunit have been identified, through site-directed mutagenesis, as catalytic
switches for improving its carboxylation capacity [58,59]. Still, recent studies have clearly demonstrated that
Rubisco small subunit can also be an important determinant of kinetic traits [53,54,60–64]. Since nuclear trans-
formation is already optimized in many species, the nuclear-encoded RbcS multigene family is becoming an
emergent target for crop photosynthetic enhancement (Figure 1A).
Overexpression of C4-plant RbcS in rice increased Rubisco kcat

c and Kc by 30–50% and decreased Sc/o by 5–
15% [60,63], partially reflecting the catalytic properties of the C4-plant enzyme. Moreover, when the native
RbcS multigene family was knocked out and completely replaced by Sorghum C4 RbcS in rice, the produced
hybrid Rubisco showed increased kcat

c and Kc by 80–90% and reduced Sc/o by 15% relative to WT rice Rubisco
[64], almost matching the Sorghum C4 Rubisco kinetics.
Overexpression of an unusual rice RbcS isoform, that is only expressed in non-photosynthetic cells, also sig-

nificantly enhanced kcat
c and Kc, and reduced Sc/o, relative to native leaf rice Rubisco [61]. Similarly, an RbcS
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isoform expressed in trichomes, which belongs to a different phylogenetic cluster than RbcS genes expressed in
mesophyll cells, increased kcat

c and Kc in tobacco [53,62] and potato [54]. Arabidopsis RbcS mutants expressing
algal Chlamydomonas reinhardtii small subunit also differed in Rubisco catalysis (reduced kcat

c and Sc/o) from
WT plants, which was also reflected in significant changes in photosynthesis and growth [65]. These results
demonstrate the importance of RbcS on Rubisco kinetics that can be exploited for the improvement of crop
photosynthesis.

Introducing CO2 concentrating mechanisms in C3 plants
Atmospheric CO2 gas has to diffuse through several leaf barriers to Rubisco’s active site in C3 plants. Among
these resistances, leaf mesophyll conductance (gm) is the main limitation for photosynthesis in many plant
species. Leaf anatomy is the most determining component of gm, and, since it is encoded by multiple genes, it is
too hard to directly improve gm (but see [66] for increased CO2 conductance by overexpression of aquaporins).
Some photosynthetic organisms have developed CCMs, which increase [CO2] around Rubisco during

steady-state photosynthesis, promoting a nearly saturated carboxylation activity and a strong reduction in the
oxygenation activity of Rubisco. There is a wide variability in CCMs that have evolved in some plants, algae
and bacteria, ranging from biochemical processes involving a first carbon fixation into a C4 molecule before the
definitive Rubisco-mediated carbon fixation (C4 and crassulacean acid metabolism plants), to biophysical pro-
cesses based on active transporters of dissolved inorganic carbon (HCO3 and/or CO2) and/or proton pumps
contributing to the creation of acid zones, coupled with carbonic anhydrases that accelerate the interconversion
between HCO3

− and CO2 [67]. Efficient CCMs in cyanobacteria, some proteobacteria and many eukaryotic
algae include the packaging of Rubisco along with carbonic anhydrase into non-membranous compartments (i.
e. carboxysomes in bacteria and pyrenoids in algae [68,69]). Rubisco kinetics co-evolved with CCMs, leading to
higher kcat

c and Kc values along with a relaxation in Sc/o and carboxylation efficiency promoted by the high CO2

environment around Rubisco [27]. Therefore, organisms with CCMs possess potentially higher nitrogen effi-
ciencies (and higher water use efficiencies in the case of terrestrial plants) relative to their counterparts without
CCMs, since the former can fix the same amount of CO2 with less Rubisco protein, which supposes an import-
ant reduction in N investment (and reduced time for stomatal aperture in the case of terrestrial plants [70]).
Models predict that the introduction of CCMs in C3 plants (Figure 1B,C) could significantly increase the net
CO2 uptake, producing >50% enhancement in CY [15].

Biophysical CCMs: carboxysomes and pyrenoids expression in chloroplasts
Cyanobacteria and some proteobacteria possess bicarbonate transporters in the plasma membrane that allow
bicarbonate accumulation in the cytosol. Carboxysomes encapsulate Rubisco within a polyhedral protein shell
that allows the transport of HCO3

− and RuBP inside it but restrict the efflux of CO2 out of the microcompart-
ment, maintaining an internal elevated [CO2]. There are two different types of carboxysomes, α-carboxysomes
(associated to form IA Rubisco) and β-carboxysomes (associated to form IB Rubisco), with similar physio-
logical functioning despite intrinsic structural differences [71]. Recent advances have been made in the expres-
sion and assembly of carboxysomes within heterologous hosts (Figure 1B). Functional proteobacterial
α-carboxysome has been assembled in E. coli by expressing the carboxysome operon [72]. Recently, simplified
cyanobacterial α-carboxysomes have been reconstituted in tobacco chloroplasts with a minimum set of genes
(rbcL and RbcS, together with two key α-carboxysome structural proteins) which were able to encapsulate
Rubisco and to allow autotrophic plant growth [24]. Regarding β-carboxysomes, Lin et al. [73] and Orr et al.
[74] observed functional macromolecular complexes within tobacco chloroplast stroma by co-expressing cyano-
bacterial Rubisco with an internal carboxysomal protein (CcmM35), which represent an early step in the bio-
genesis of this type of carboxysomes. In addition, Fang et al. [75] was able to produce functional
β-carboxysome-like structures in E. coli using 12 genes from Synechococcus elongatus. However, none of the
transformed tobacco lines expressing simplified carboxysome-like structures were able to grow equal or faster
than WT plants. This result was expected, since no pumping and accumulation mechanisms for inorganic
carbon inside the chloroplast was still introduced in the transplantomic plants, and only Rubisco encapsulation
is not enough for a functional CCM operation. Directions towards fully functional bacterial CCM expression in
C3 chloroplasts go through targeting functional bicarbonate transporter proteins into the chloroplast mem-
branes (Figure 1B), a matter that is still underway [76–78].
Most of the knowledge about eukaryotic algal CCMs comes from the model species C. reinhardtii. The

CCMs in this species is based on HCO3
− transport across the periplasmic, chloroplast and thylakoid
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membranes. Then, HCO3
− is converted to CO2 by carbonic anhydrase at the acidic pH of the thylakoid lumen,

and finally CO2 diffuses to Rubisco active sites in the pyrenoid matrix, since Chlamydomonas pyrenoid is con-
nected by cylindrical pyrenoid tubules with thylakoids [79]. Although pyrenoids do not have a protein shell
restricting gas diffusion, starch granules form a sheath around pyrenoid matrix [79] that probably limits CO2

leakage. The multiple repeat linker-protein, EPYC1, is associated with Rubisco small subunits during aggrega-
tion within the Chlamydomonas pyrenoid [80]. EPYC1 was successfully expressed and localized in higher plant
chloroplasts [81], and recently, hybrid Rubisco composed of Arabidopsis large subunit and Chlamydomonas
small subunit has been shown to aggregate with EPYC1 into a proto-pyrenoid, with similar liquid-like proper-
ties, in Arabidopsis chloroplasts [82]. Novel research is now focused on the binding mechanism between
Rubisco small subunit and EPYC1, as well as with other key proteins, that will allow the engineering of
minimal sequence changes into native crop Rubiscos to be able to reconstitute a functional pyrenoid in C3

plant chloroplasts [83] (Figure 1B). Future research steps in this field must focus on the mostly unexplored
introduction of eukaryotic HCO3

− transport mechanisms in the periplasmic, chloroplast and thylakoid mem-
branes, in order to enhance plant Rubisco carboxylation capacity.

Biochemical CCMs: transforming C3 in C4 plants
The CCMs of C4 plants with Kranz anatomy consist of a first non-definitive carbon fixation, in which CO2 is
fixed in the mesophyll cells by phosphoenolpyruvate carboxylase (PEPc), producing C4 acids. The resulting C4

acids are then transported to and decarboxylated in the bundle-sheath cells, where the liberated CO2 is fixed by
Rubisco [84].
Since C4 plants possess enhanced energy conversion efficiencies, higher nitrogen and water use efficiencies,

and higher yields than C3 plants, long-standing efforts has been done during the last two decades to transfer
C4 photosynthesis to C3 crops (see the C4 rice project; https://c4rice.com/ [84,85]). The most important genes
required for the C4 pathway have been successfully introduced into rice [86], and evidences for in vivo incorp-
oration of CO2 into C4 acids was revealed, but still without subsequent decarboxylation [53,87], presumably
due to low enzyme levels or poor enzymatic regulation in the rice transgenic lines.
Engineering the C4 pathway into a C3 plants not only requires the introduction of the biochemical pathway,

but also the implementation of Kranz anatomical traits (Figure 1C). Recently, some progress has been made by
obtaining a ‘proto-Kranz’ anatomy with induced photosynthetic development of vascular sheath cells through
constitutive expression of maize transcriptional regulator of cellular differentiation [88], which resulted in
increased photosynthetic efficiency and yield (by 30–40%) under excessive or fluctuating light conditions [89],
but not under optimal light conditions. Although a full Kranz two cell-type C4 mechanism has still not being
implemented in rice, the results obtained up to date suggest that it may be achievable in the future [85].

Altering expression and activation of Rubisco
Changes in the expression of Rubisco large and/or small subunits altering Rubisco content have also been
shown to enhance photosynthesis and yield in both C3 and C4 crops (Figure 1D). Transgenic rice with
increased Rubisco concentration (by 30%) exhibited ∼15% enhanced biomass production in lab experiments
[90] and up to 30% increased yields with improved N-use efficiency for increasing biomass production when
receiving sufficient N fertilization in field experiments [91]. This has been the first study reporting enhanced
CO2 assimilation and yield by increasing Rubisco content, and therefore, Rubisco activity, in a C3 species.
Previously, models have predicted that an increase in Rubisco activity at ambient [CO2] would benefit CO2

assimilation in C4 species but not in C3 species, where it would only benefit CO2 assimilation at lower CO2

concentrations [9,92]. In the C4 species, Zea mays, overexpression of Rubisco large and/or small subunits,
together with the Rubisco assembly chaperone RAF1, resulted in a >30% increase in Rubisco content, which
was translated in improvements in CO2 assimilation and growth [93,94].
Not only the content, but also the degree of activation of Rubisco is crucial for enhancing in vivo CO2

assimilation (Figure 1D). The active site of Rubisco is prone to deactivation by tight-binding of inhibitory
sugar-phosphates, which are released by the ATP-dependent chaperone Rubisco activase [19]. It has been
shown that the alteration in Rubisco content might also affect Rubisco activase activity [93], as well as overex-
pression of Rubisco activase can produce a reduction in Rubisco content [95,96], revealing the intrinsic connec-
tion between Rubisco and Rubisco activase expression and functioning.
The in vivo degree of activation of Rubisco under optimum conditions in illuminated crops is about 80–90%

but it decreases at higher temperatures due to the thermolability of plant Rubisco activase [97], producing a
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decrease in crop CO2 assimilation by heat stress. There have been substantial improvements in the understand-
ing of the regulation of in vivo CO2 assimilation under heat stress in plant species from different thermal envir-
onments [98,99]. Increased Rubisco activase content has been associated with increased grain yield in the C4

species, Z. mays [100]. The replacement of native Rubisco activase by, or overexpression of, a more thermo-
stable isoform has led to significant yield improvement under heat stress in Arabidopsis and rice [101,102];
while mutational variants of Rubisco activase including a conserved sequence from heat-adapted species,
improved wheat Rubisco activase thermostability [103] (Figure 1D). Therefore, Rubisco activase has been iden-
tified as an important target for improving photosynthesis and crop productivity in near-future climate change
scenarios [102].

Conclusions and future prospects
Substantial progress has been made regarding the expression and metabolic regulation of more efficient and
CO2-specific Rubisco versions in crops, and major steps toward implementing CCMs in C3 crops have been
achieved, including the assembly of bacterial carboxysomes in tobacco chloroplast and the establishment of
proto-Kranz anatomy in rice. Photosynthetic and yield improvements have already been observed when
manipulating Rubisco quantity and activation degree. Still, engineering Rubisco is a complex challenge that
requires a better understanding of chloroplast gene regulatory pathways, Rubisco catalysis and biogenesis [20].
In addition to the improvements in Rubisco carboxylation capacity discussed in this review, it is likely that

for improving CY to meet the future food and bioenergy demands, it would be necessary to engineer a large
number of different traits targeting photosynthesis. This might include improvements in electron transport cap-
acity [104,105] manipulations of Calvin Cycle enzymes other than Rubisco, such as sedoheptulose-1,7-
bisphosphatase [106–108], and engineering more efficient photorespiratory pathways to reduce the loss of fixed
carbon [109–111]. The previously mentioned bioengineering approaches have already demonstrated an increase
in plant biomass production and yield in both glasshouse and field experiments, and have been reviewed in
detail by Simkin et al. [8], Nowicka et al. [112] and Timm and Hagemann [113].
Indeed, cross-scale modeling revealed that other photosynthetic components such as light energy capture

efficiencies must be manipulated simultaneously to Rubisco activity to obtain the greatest improvements in C3

and C4 CYs [9].
Finally, alternative (natural or synthetic) carbon assimilation pathways substituting for the Calvin Cycle are

other promising targets for photosynthetic improvement [114,115].
A combination of the mentioned strategies may hopefully contribute to improving agricultural productivity

in future climate change scenarios to meet the food and bioenergy demand of a growing human population.

Perspectives
• Rubisco catalyzes the rate-limiting step of CO2 fixation, but also initiate the carbon wasteful

photorespiratory pathway, therefore, bioengineering its carboxylation capacity is a promising
target for the improvement in crop photosynthesis and yield.

• Recent advances in expressing more efficient foreign Rubisco versions and some CCMs com-
ponents (e.g. carboxysomes) in crops have been achieved, as well as modifications in the
level of expression and activation of crop native Rubisco.

• A better understanding of Rubisco folding and assembly, and photosynthetic gene regulatory
pathways, is needed to obtain the greatest improvements in crop photosynthesis, although
the results obtained up to date suggest that it might be achievable in the near future.
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